C++ FRIEND FUNCTION
AND FRIEND CLASSES




@ Data hiding is a fundamental concept of object-oriented programming. It
restricts the access of private members from outside of the class.

@ Similarly, protected members can only be accessed by derived classes and
are inaccessible from outside. For example,

class MyClass {
private:
int member1;
H

int main() {
MyClass obj:

// Error! Cannot access private members from here.
obj.member1 = 5;

® However, there is a feature in C++ called friend functions that break this
rule and allow us to access member functions from outside the class.

@ Similarly, there is a friend class as well, which we will learn later in this
tutorial.




FRIEND FUNCTION IN C++

@ A friend function can access the private and protected data of a class. We
declare a friend function using the friend keyword inside the body of the
class.

class className {

friend returnType functionName(arguments):




ff C++ program to demonstrate the working of friend function

#include <iostream:=
using namespace std:

class Distance {
private:

S e /f friend function definition

int addFive(Distance d) {

/f friend function

friend int addFive(Distance): ffaccessing private members from the friend function

d.meter += 5:

public: return d.meter;
Distance() : meter(0) {} T
1: int main{) {
Distance D;
cout << "Distance: " << addFive(D);
return 0;
1

Distance: 5



@Here, addFive() is a friend function that can access
both private and public data members.

@Though this example gives us an idea about the
concept of a friend function, it doesn't show any
meaningful use.

@A more meaningful use would be operating on
objects of two different classes.

@That's when the friend function can be very helpful.




// Add members of two different classes using friend functions class ClassB {

#include <iostream:= public:

using namespace std; // constructor to initialize numB to 1

ClassB() : numB{1) {}
/f forward declaration

class ClassB: private:
int numB;
class ClasshA {
// friend function declaration

public: friend int add({ClassA. ClassB);
// constructor to initialize numA to 12 }:

ClassA() : numA{12) {}

/7 access members of both classes
private: int add(ClassA objectA, ClassB objectB) {
int numA; return (objectA.numA + objectB.numB);

/f friend function declaration

friend int add(ClassA, ClassB):
. int main{) {

ClassA objectA;
ClassB objectB;
cout << "Sum: " <<« add(objectA, objectB);
return 0;




@In this program, ClassA and ClassB have declared add() as a
friend function. Thus, this function can access private data
of both classes.

@0ne thing to notice here is the friend function
inside ClassA is using the ClassB. However, we haven't
defined ClassB at this point.

/f inside classA

friend int add(ClassA. ClassB);

For this to work, we need a forward declaration of Classg in our program.

/f forward declaration

class ClassB;




=Y

® We can also use a friend Class in C++ using the friend keyword. For
example,

r | W

class ClassB;

class ClassA {
/f ClassB is a friend class of ClassA
friend class ClassB:

® When a class is declared a friend class, all the member functions of the
friend class become friend functions.

® Since ClassB is a friend class, we can access all members of ClassA from
inside ClassB.
® However, we cannot access members of ClassB from inside ClassA.

@ Itis because friend relation in C++ is only granted, not taken.




ff C++ program to demonstrate the working of friend class class ClassB {

private:
#include <iostream= int numB;
using namespace std;
public:
ff forward declaration // constructor to initialize numB to 1
class ClassB; ClassB() : numB(1) {}

class ClassA {
private:
int numA;

// member function to add numA
// Trom ClassA and numB from ClassB
int add() {

ClassA objectA;

/f friend class declaration ;
return objectA.numA + numB;

friend class ClassB:

¥
public: E
// constructor to initialize numA to 12 . .
ClassA() : numA(12) {3 LA Mati s o
- ClassB objectB;
cout << "Sum: " << objectB.add();
return 0;




@Here, ClassB is a friend class of ClassA.
®So0, ClassB has access to the members of classA.

@In ClassB, we have created a function add() that
returns the sum of numA and numB.

®Since ClassB is a friend class,
@we can create objects of ClassA inside of ClassB.




